CONCENTRATING ON CLEAN WATER
UNAVOIDABLE QUESTIONS ABOUT CAFOs EXAMINED IN REPORT

IOWA CITY, Iowa (April 6, 2005) – Large-scale animal livestock confinement operations generate or pass on water-related costs that must be addressed through public policies that protect producers, consumers and the environment over the long term, according to a new report.

The new report for the nonpartisan Iowa Policy Project notes not only manure-management challenges presented by such operations, but potential broader effects on water quality and social and economic impacts in rural communities.

Stronger regulations and enforcement are needed to assure environmental protection, according to the report.

“Facing the issues addressed in this report is unavoidable,” said David Osterberg, executive director of the IPP. “Failing to act will cost Iowa opportunities to protect its environment and improve quality of life for independent livestock producers, neighboring homeowners and communities.”

The author of the report is Carol J. Hodne, an Iowa scholar experienced in research on large-scale livestock operations, farmers’ health and rural health. Hodne examined recent scientific literature about water-quality issues related to concentrated animal feeding operations, popularly known as CAFOs.

Hodne’s report – which is available on the web at www.iowapolicyproject.org – illustrates an industry that has grown faster than the ability or willingness of operators and regulators to assure environmental protections that shield Iowans from adverse health effects and protect Iowans’ quality of life, while enhancing independent producers’ ability to survive.

While well-applied manure has positive attributes, she wrote, excessive amounts of manure from large-scale CAFOs have caused considerable concerns about their threat to water quality. Excessive nutrients, such as nitrogen and phosphorus, can be applied to land, and spills or seepage from lagoons can contaminate streams or groundwater. Numerous scientific articles describe how nutrients, bacteria (some resistant to antibiotics) and other components of manure reach surface waters and groundwater.

“CAFOs have in many cases contaminated water, and impaired water quality can lead to broader environmental, health and socioeconomic problems. The range of scientific evidence means that Iowa policymakers need to be paying closer attention,” Hodne said.

“When they don’t, it means someone – government – winds up paying subsequent costs, after contributing to the original problem through tax incentives or subsidies that encourage the industrialization of agriculture, Iowa’s leaders need to help shape a sustainable future for livestock production and agriculture generally.”
Hodne’s recommendations are for Iowa to:

- Strengthen state enforcement of the federal Clean Water Act, including regular inspections of CAFOs and enforcement of monitoring and reporting requirements;
- Strengthen local control in livestock production regulations and siting decisions;
- Toughen regulation regarding the use of antibiotics in livestock production; and
- Assure inclusion of phosphorus in manure management plans.

According to Hodne, research on CAFOs demonstrates that livestock production is increasingly dominated by large operations in which aspects of production, processing and distribution are coordinated through ownership and/or management. This erodes the autonomy of the remaining family farm producers who are able to integrate manure into more environmentally sound, diversified operations and use new sustainable livestock production methods.

“Although traditional farming causes some water pollution, areas with high levels of CAFO production experience additional water pollution risks,” Hodne wrote in the executive summary of the paper.

The full report and executive summary are available on the IPP website.

The Iowa Policy Project, based in Mount Vernon, is a nonprofit, nonpartisan organization that produces research reports for the public to foster better-informed debate on issues of importance to Iowa citizens.

#